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Time-evolution properties of a linear Boltzmann collision 
operator 

A Tip 
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1009 SJ Amsterdam, 
The Netherlands 

Received 26 May 1981, in final form 6 October 1981 

Abstract. Some properties of a linear Boltzmann collision operator acting in the L’ space of 
absolutely integrable functions of the velocity are derived. The system considered consists 
of particles moving in a dilute equilibrium gas. The case of a constant accelerating force 
acting upon the particles (as encountered in electron swarm experiments) is also studied. It 
is found that the collision operator is a dissipative operator which generates a strongly 
continuous contraction semi-group. It is also shown that the time evolution leaves the 
positivity and normalisation of the distribution function invariant. 

1. Introduction 

In the present work we study the properties of the linearised collision operator J for a 
binary mixture of dilute gases made up of point particles. It is assumed that the 
concentration of the first component (1) is so low that the second component (2) 
remains in equilibrium. Typical examples of this situation are encountered in electron 
and ion swarm experiments. 

The time dependence of the distribution functionfi(x, ul, t) of the first component is 
supposed to be described by the linearised Boltzmann equation for a spatially infinite 
system; 

(at+ul  * a x  + U  *au,)fi(x, 01, t )  = (Jfi)(x, 01, t ) .  (1.1) 

Here x and t are the space and time variables, ul is the velocity variable for component 
1 and J is the linearised collision operator. In swarm experiments a constant 
homogeneous electric field is applied to the system. This gives rise to a constant 
acceleration U. 

The interest in (1.1) lies in its use for the description of irreversible processes in 
dilute gases. Since the irreversible behaviour enters through the collision operator J in 
(1.1) it is important to study its properties such as the location of its spectrum and its 
dissipative nature. 

The usual procedure is to put the problem in a Hilbert space setting by means of the 
following procedure: fi is written as 

where fro) is the Maxwell-Boltzmann distribution function taken at the temperature T 
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1160 A Tip 

of the second component ( k  is Boltzmann’s constant and m l  the mass of a particle of 
component 1). 

11.3) fro' (ol) = [ml/(2.rrkT)]3’2 exp[-mlu:/(2kT)]. 

The inner product 

defines a Hilbert space E. The collision operator C acting in E is now defined by the 
relation 

Jf  = Jfp’cP = f\”C@. 11.5) 

C is a non-positive, densely defined, symmetric operator. It follows that C has a 
self-adjoint extension acting in 2. Now the well developed apparatus of Hilbert 
space operator theory can be applied in order to study the properties of C. This has 
been done in the past for related problems where the interaction between the particles 
was taken to be a repulsive power potential (Pa0 1974). Within the context of neutron 
thermalisation problems, hard sphere interactions have also been considered (KuSEer 
and Corngold 1965), In the first case an additional complication arises since the 
classical total cross section is not finite for repulsive power potentials. 

The above approach leaves something to be desired. The reason is that the topology 
of the Hilbert space 2 is not the natural one for the present situation (see also the 
remarks made by Uhlenbeck and Ford (1963, p 88)). Clearly the choice of a topology 
for the underlying function space should be based upon physical considerations. Let us 
therefore consider the number density n l ( x ,  t )  of component 1 as given by 

(1.6) 

Let V be a volume in coordinate space with finite Lebesgue measure k. (V) .  The 
average number of particles of type 1 to be found in V at time t is 

Since Nv must be finite for such V it follows that f should be Lebesgue-integrable over 
o and locally Lebesgue-integrable over x. Thus, in order to give (1.1) a meaning it is 
necessary to introduce a topology consistent with the above integrability conditions. 
The integrability over U causes no problems; we have to require that f as a function of U 
is absolutely integrable, i.e. an element of L1(R3, du) in the absence of any x depen- 
dence. This is the case in spatially homogeneous systems. Since J only acts on the 
velocity variable, a system will remain spatially homogeneous once this is the case at 
some initial time. This situation is not altered by the presence of an acceleration term 
a *sol with a independent of x. 

Another simplifying situation is that of a finite number of particles of type 1. Then 
the local integrability over x can be replaced by global integrability. f l ( x ,  ol, t )  E 

L’(R6, dol dx). In fact the experimental situation encountered in swarm experiments 
can be of this type. At some initial time a finite number of electrons is introduced (for 
instance by photoionisation caused by a pulse of photons produced by a laser). As long 
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as no secondary electrons are produced by collisions with the atoms or molecules of 
component 2 or electrons are captured by these particles, the number of electrons will 
remain constant. Of course no stationary situation can build up in this way; the electron 
density will eventually decay to zero. 

In the general case f l ( x ,  ul) is, upon integration over ul, mapped into the space 9 of 
locally integrable functions of x, i.e. fl E L'(9, R3, dul). 9 can be topologised by means 
of a suitable set of semi-norms so that it becomes a Frdchet space. This procecure is 
entirely compatible with the physical situation at hand, but unfortunately the theory of 
spaces of the type I-.'(% R3, du) is not well developed. 

The situation is different if 9 is a Banach space (Dunford and Schwartz 1957, 
chap IV). Of course, other approaches are possible, for instance by imposing suitable 
initial or boundary conditions. Then, however, we are no longer dealing with the 
general infinite space problem. 

It will be clear that, whatever the situation is, it makes sense to study the properties 
of J or, in the presence of an accelerating force, J ( u )  = J - U  *aul as an operator in the 
Banach space E= L1(R3, dui). This corresponds to the study of C in X, but as discussed 
in the foregoing the choice of topology made here seems to have a better physical 
motivation. Also, as mentioned in § 3, serious problems occur with this approach if a 
non-vanishing acceleration term is present in (1.1). 

Throughout this work we assume that the differential cross section a(g, g') (see 0 2) 
entering into the collision operator J is an essentially bounded measurable function of g 
and g'. As a consequence the total cross section is finite almost everywhere. We also 
make the usual assumption that a@, g')  possesses the symmetry property a(g, g ' )  = 

In § 2 we study the existence problem of the collision operator J and its adjoint J*, 
whereas in § 3 we show that these operators (and also J ( u )  = J - U * a u  and its adjoint) 
are dissipative operators which generate strongly continuous contraction semi-groups. 
There it is also found that the positivity and normalisation of the distribution function 
fl(ul> are preserved in time. 

In order to obtain these results use has been made of the notion of a semi-inner 
product (Lumer 1961). Thus it becomes possible to define the numerical range of an 
operator in a general Banach space and to define a dissipative operator in terms of the 
properties of its numerical range. Further results by Lumer and Phillips (1961) then 
connect dissipative operators with generators of strongly continuous contraction semi- 
groups. 

For the various mathematical concepts used in these sections we refer to Dunford 
and Schwartz (1957), Hille and Phillips (1957), Kat0 (1966) and Yosida (1966). The 
relevant physical literature concerning the Boltzmann equation can be found in 
Chapman and Cowling (1970) and Waldmann (1958). 

Uk', g) .  

2. The existence of J and J* 

Let E = L1(R3, dul) be the space of complex integrable functions of u1 E R3. Its dual 
space is P = L"(Uf, dui), the space of Lebesgue measurable essentially bounded 
functions. Let f~ E and 4 E B?. Their respective norms are 
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A bounded linear functional @(f), f~ E can be represented as 

Wf) = I dol f(&(od ~ ( f ,  4 )  

where 4 is an element of E*. Note that (f, (6) is linear in its first entry and conjugate 
linear in its second. The Hilbert space X introduced in 5 1 is X= L2(1w3, fY’(o1) dol). 
f!o’(vl) as given by (1.3) is a positive element of L2(R3, dol) and 

llfl’ll1 = I dol f :”(ul )  = 1. ( 2 . 3 )  

We denote the norm on X by 1141/z (4, #)1’2, 4 E X. 
L e t 4 E P .  Then 

11411: = 1 dol f!o)(odb(o~)12 ~~4~kl~fio)h = 11411& 

so that 4 E X. Now let 4 E X. Then 
1 / 2  

IIf‘”4111= dol f?’(o1M(o1)I (J  dol f:“‘(oi)14(ol)12) . 

i.e. for 4 E E, f ‘ O ’ 4  E E. We summarise these results in the following proposition. 

Proposition 2.1. E* c X i.e. 4 E E* + 4 E X. Also 4 E X+f“)4 E E and l~f(o’411i 
1 1 ~ 1 1 ~  11~11m. 

The explicit form of the collision operator J is given by 

Here fk0’(u2) is the Maxwell-Boltzmann distribution function at the temperature T of 
the second component 

fio)(oz) = n2[m2/ (2~k~) ]312  exp[-m2~:/(2k~)]. (2.5) 

Here k is Boltzmann’s constant, n2 the uniform density of component 2 and m, is the 
mass of a particle of component j .  In (2.4) primed variables have their usual meaning as 
post-collisional velocities. g = o1 - u2, g‘ = U ;  - U; and a ( g ;  g ’ )  is the differential cross 
section for mutual scattering of particles of type 1 and type 2. Momentum and energy 
conservation lead to the relations 

m l u l + m 2 v 2  = m l v i  +m2u;, g = g’. (2.61 

The integral do,, is over the angles of g’. We can write (2.4) as 

Here 
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where the total cross section is given by 

et&) = I d n , d g ;  8’). 

Furthermore (see Waldmann 1958, § 30) 

K ( u l ,  U;) = I du2 a ( g ;  g‘)S(4g2-qg’2)f20’(u;). 

(2.9) 

(2.10) 

As shown in the Appendix, we can write 

K(ul, U;) = n2d(ul, 0 ; ) ( 2 A ) - ~ ( a / . r r ) ’ ’ ~  e ~ p [ - a A - ~ ( A ~ + A - u ; ) ~ ]  (2.11) 

where a = m2/(2kT), A = [(ml + m2)/(2m2)] (UI -U;) and 

d(u l ,  U;) = ( a / r )  dul duz exp[-a(u:+ui)]. 

(2.12) 

I 
d u i  + vi i ,  ~ z +  viz, A; u i  + v i i ,  u 2 + ~ 1 2 ,  -4. 

Here uii is the jth component of ui. For a classical hard sphere interaction a(u1, U;) = 
(Ths is independent of the velocities, in which case 

d h s  = Uhs, 

Khs(Ul, tc ; ) = npahs(”)-1(a/.rr)1’2 exp[-a A-’(AZ + b. U ’1 )’] (2.13) 
and 

01 

+U;’ jo dw w 2  exp(-aw2)+a-’ exp(-aa:)). (2.14) 

(2.15) 

An easy computation shows that a,,Yhs(vl) 2 0 so that Yhs(U1) is an increasing function of 
v 1  with minimum 

Y(0) = 2n*chs(ra)-1/2. (2.16) 

As mentioned in the Introduction, we confine ourselves to systems with finite differen- 
tial and total cross sections. Thus Y and K, the operators associated with the multi- 
plicative function v(u1) and the kernel K(u1, U;) respectively, have a meaning as 
separate objects (contrary to the classical repulsive power case where the total cross 
section does not exist). Nevertheless, as brought out by the example of hard spheres, 
these operators need not be bounded. (The operator Vhs(U1) is clearly unbounded.) This 
raises the question whether (2.4) and (2.7) make any sense at all. In order to proceed, it 
is convenient to consider the action of Y and K on simple functions. In our case these 
functions are the finitely valued (values al,. . . , a,) functions f(u) from R3 to C with 
Bi = {ulf(u) = ai} Lebesgue measurable. Thus, if xB denotes the characteristic function 
for the set B the simple functions can be written as 

(2.17) 
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Without loss of generality we may assume that Bi has non-zero Lebesgue measure. The 
simple functions form a dense set in Lp(R3,  do), 1 s p  =sa. (For 1 s p  < 00 see Dunford 
and Schwartz (1957, p 105) and for p =CO see Yosida (1966, p 118).) The subset of 
simple functions with bounded support (so that f(u) = 0 for U lo I > p for some finite 
positive p )  will be referred to as the set of b-simple functions. The b-simple functions 
are dense in Lp(R3 ,  do), 1 = s p  < 00 but not in L"(R3, do). 

Proposition 2.2. Let A c %* be the linear subset Jt = {4 E %* = L"(R3, do)( 
ess ~ u p ~ , ~ l 4 ( u ) l =  0). Then 

(a) A is a closed subspace of %*. 
(b) The b-simple functions are dense in A. 
(c) 2? can be associated with a closed linear subspace X of A* by defining (4 E Jt, 

fe f l  @f(4) = (4, f). In addition 11@f11=  sup(l(4, f ) l ,  4 E A, 1141L = 1) = Ilflll. 

Pro0 f, 
(a) Let {&) c A be a Cauchy sequence with respect to the norm-topology in P. 

Then & + 4 ~ % ' * .  For almost every U we have ~ ~ ( o ) ~ s ~ ~ ( o ) - 4 f l ( u ) ~ ~ t ~ ~ f l ( u ) ~ ~  
114 - 4,JJm + I4,,(u)l. For given E > 0 there is an no = no(€ )  such that the first term on the 
right is smaller than E for n > no. Keeping n >no fixed from now on, we can now make 
the second term on the right smaller than E (for almost every U )  by taking u sufficiently 
large. Thus 4 E A. 

(b) For given + ( D ) E A  let & ( o ) = ~ ( u ) ,  v s p  and 4 , ( v ) = O  for v > p .  Then 
11411co s I14,11m+ 114 - 4,11m. The last term on the right can be made arbitrarily small by 
taking p sufficiently large. Keeping p fixed from now on, we can find a b-simple function 
9 which vanishes for U > p and for which 114, - $11 is arbitrarily small. Thus (14 - I& s 
114 - +,IJm + (14, - 
for o with f ( o )  # 0 and let &(U) = 0 otherwise. Further, let G,(o) = 1 for v s n and 
G,(u) = 0 for U > n, n = 1 , 2 , 3  . , . . Then &(U) = G,(u)q5f(u) is contained in and 
I/4,, llm = 1. Now 

and the right-hand side can be made arbitrarily small. 
(4 Clearly I@f(4)1= I(4,f)l ~l1411mllfll~ so that ll@~ll=sllfll~. Let 4 d u )  =f(o)llf(o)l 

Il@fll~suPl@f(4fl)/ =sup/ l  dv Gfl/D)4f(U)7(Dj/ =s;P j"Lfldu l f~~~l=llf l l l~ 

so that we must have l/@fl\=/\f\l1. From this result it is clear that X is closed. In the 
following we shall no longer distinguish between X and 2' if no confusion can arise. 

We now return to the operators v and K. Let f (ul)  be b-simple. Thus f vanishes for 
U > p  for some p > 0. Let Ilutotllm = {ess sup utot(g), g a 0). Then 

v(t)l) sI1rtotilm j dozlol- o2~fio)(o2) (2.18) 

and 

(2.19) 

Since the right-hand side of (2.19) is finite it follows that the b-simple functions are in 
the domain of v, i.e. v is densely defined. It is straightforward to show, by making 
estimates of the type (2.18), that v(u) is continuous. The maximal domain of v is 
9 ( v )  = { f ~  2?lvf~ m. Since v(o) 2 0  the operator (1 $. v)-' is a bounded multiplication 
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operator in %’. Consequently 1 + v and hence v with domain 9 ( v )  is closed. K 
possesses the property (see the Appendix) 

I duK(u, U‘) = v(u’>. (2.20) 

Thus, for f(u) E 9 ( v ) ,  

Here the Fubini-Fonelli theorem was used in order to interchange the integrations. 
Since K(u, U’) is non-negative, equality in (2.21) holds for non-negativef(u). Thus K is 
relatively v-bounded with relative bound one. We conclude that 

J = K - v ,  g ( J )  = gb), (2.22) 

is well defined. If Y is bounded it follows from (2.21) that K is bounded as well and 
hence J is bounded. In general, however, J may not even be closed. 

It follows from (2.20) that for f~ 9 ( J )  

du(Jf)(u) = (Jf, 1) = 0. (2.23) 

The physics behind this is that no particles of component 1 are created or annihilated 
during collisions. Since J is densely defined it follows that it has a uniquely defined 
closed adjoint J* acting in P. For f~ 9 ( J )  and 4 E g ( J * )  we have 

(Jf, 4 )  = (f, J*4).  (2.24) 

Now let f ~ 9 ( J )  and let q5 be 6-simple. Using the Fubini-Tonelli theorem and 
relabelling the variables (U -U’), we obtain 

(Jf, 4 )  = I du( I do’ Kb,  u ’ ) f W d h ) - -  4u l f (u) )&u)  

= I du’ I du K(u, u’)f(u’)&(u)-j du v(u)f(u)$(u) 

= I duf(u)( I du’ K(u’,  U)C$(U’)- v(u)&(u))  

= (f, J’4L (2.25) 

where 

( J ‘ d ) ( u )  = I du’ K(u’,  u)c$(u’) - v(u)+(u) .  (2.26) 

Since +(U) vanishes for U larger than some p > O  and v(u) is continuous it follows that 
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uq5 EA. Also 

( 2 . 2 7 )  

where jlcTllm = sup @(U, U'); U, U' E R3. Since the right-hand side tends to zero for large U, 
we conclude that J'q5 E A for b-simple (b. Thus J L ,  the restriction of J' to A with the 
b-simple functions as domain, is densely defined in A. Since J' c J* it follows that J *  is 
defined on a dense set in A. According to (2.23) J* is also defined when acting upon the 
constant functions from X* and J*q5 = 0 for such q5. It is not clear, however, whether or 
not J *  is in general defined on adense set in P. (This is, of course, the case for bounded 
J and J* . )  If J* is densely defined then J is closable (Kato 1966, chap 3, theorem 5.28). 
In fact J is closable but we have to follow a more roundabout way to arrive at this result. 
Let J z  be the restriction of J* to A, i.e. its domain is 9 ( J L ) =  
{(b E 9 ( J * )  nA/J*(b E A}. J f  is closed along with J* as is easily checked. J:t( c .Iu% so 
that J S  is densely defined in d. It follows that its adjoint (J$)* exists as a closed 
operator acting in A*. Let f~ 9 ( J )  c Xc A* and let (b E 9 ( J L )  (i.e. q5 is b-simple). 
Then 

(2.28) 

i.e. J and J L  are adjoint to each other. Thus J is a restriction of (J&)*  (Kato 1966, 
p 167). Since 2' is a closed subspace of A* it now follows that J has a closed extension j 
acting in 2. Conversely, since J is densely defined in X and J and J L  are adjoint to each 
other Jh is a restriction of J * .  Since A is a closed subspace of zz"*, J L  has a closure J:tt 
acting in A and its maximal closed extension is J z .  Thus we arrive at: 

( J f ,  4 )  = ( f ,  JL4L 

Proposition 2.3. J is a densely defined, closable operator. We denote its closure (i.e. its 
smallest closed extension) by 1 The domain of J* at least contains the linear span of the 
constant function and the b-simple functions. J L  is closable in A with maximal closed 
extension J 5 .  

Corollary 2.1. The spectra u(j) and (T(J*)  coincide. Isolated eigenvalues of j of finite 
multiplicity are also eigenvalues of J *  with the same algebraic and geometric multi- 
plicities (and vice versa). 

Proof. Since 7 and J* are real operators (i.e. ($)(ul)=Jf(ul)) their spectra are 
invariant under complex conjugation (i.e. A E u(J) tJh~  cr(J)). The rest follows from 
(Kato 1966, chap 3, theorem 6.22 and remark 6.23). 

-- 

Remark. 9(J) may be larger than 9 ( v )  due to cancellation effects between K and v. 
This in fact happens with J * .  Since ( ( 1 + v ) - ' ) * ( u ) = ( l + v ( u ) ) - '  is bounded as an 
operator acting in X*, V* is closed. For v(u) tending to infinity with v(hard sphere case), 
(bo= 1 is not contained in 9 ( v * )  although C $ ~ E ~ ( J * ) .  

Lemma 2.3. Let (b E L"O(R3, du). Then f\"(b E 9 ( J )  and (b E 9(C). 
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Proof. In all cases that we consider v(u) grows at most linearly with U. Thus 
fl’(u)v(u)~(u) E % and /lvfl’qh]ll ~Il4ll~llvfP’II~. Thus f!”4 E 9 ( v )  and hence in 9 ( J ) .  
The operator C is defined through 

(2.29) 

(2.30) 

(2.31) 

It can be shown that the L“ functions are dense in 2. Thus (2.32) shows that C is 
densely defined, non-positive symmetric and consequently has a self-adjoint 
extension C. 

A comparison of (2.26) and (2.31) shows that J’ and C have the same represen- 
tation. Thus we can hope to obtain some information about the spectrum of J*  from the 
fact that has real non-positive spectrum. Indeed we have: 

Proposition 2.4. The eigenvalues of J* and the isolated eigenvalues of 
multiplicity are real and non-positive. 

of finite 
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Proof. Let 4 E S ( J * )  be an eigenfunction of J” with associated eigenvalue A. Then 

(Jf\o@, 4 )  = cf:”#, J*9) = h(f:o’4, 4 )  = h(#,#). 

cJf:”’#, 4 )  = (f:o’C#, 4 )  = (C4, #)  d 0,  

On the other hand (# E 9 ( J * )  c 2?* c 9(C)) 

so that A must be real and non-positive. The remainder follows from corollary 2.1. 

3. J generates a contraction semi-group 

An important question to be answered in the present context is whether or not J (or 
rather its closure j) generates a semi-group acting in 2. This means that the equation 

at f i t )  = J f ( t )  (3.1) 

has a solution in 2 once f~ is specified at some initial time, say at t = 0. Then 

f ( t )  = exp(Jt)f(O), (3.2) 

where {exp(jt), t z- 0 )  is a semi-group of bounded operators acting in 2. Our aim will be 
to demonstrate that {exp(jt), t 3 0} is a contraction semi-group of type CO, i.e. exp(jt) is 
strongly continuous in t 3 0 and 

Ijexp(Jt)lll 1. (3.3) 

This is a straightforward matter for {exp(i?t), t z= 0 )  acting in % since C is non-positive 
self-adjoint. One way to ascertain whether or not an operator generates a semi-group is 
to study its numerical range. In  a Hilbert space the numerical range W(A) of an 
operator A is the set of ‘expectation values’ (Af, f ) ,  f~ S ( A ) ,  l l f l l =  1. Apart from some 
other conditions to be imposed upon it, A generates a contraction semi-group if W(A) 
is contained in the closed left half of the complex plane. This result has been generalised 
by Lumer (1961) and Lumer and Phillips (1961) to generators of contraction semi- 
groups in Banach spaces. The starting point is the notion of a semi-inner product (SIP). 
Then a numerical range can be defined in terms of the former. Thus let f ,  g, h be 
contained in a complex Banach space W with norm II.I). Then [ f ,  g] is a SIP compatible 
with the norm in W if 

[ f  + h, g l  = [fi gl + [h,  81, 

[Af t  81 = A [ f ,  SI, 

[ f ?  f l=  llf112 
A €62, 

(3.4) 
(so that [ f , f ] > O e f # O ) ,  

lCf, 811 llfll ’ llgll- 

Any Banach space W admits at least one SIP compatible with its norm. Its uniqueness 
depends on the precise topological structure of W. 

Let A be an operator acting in W with domain 9 ( A ) .  Its numerical range is the set of 
complex numbers 

13.5) 

A is said to be dissipative with respect to the SIP [,] if W(A) is contained in the closed left 
half of the complex plane, i.e. the real part of any element of W ( A )  is non-positive. In 

W(A) = {[Af, fl; f~ 9 ( A ) ,  l l f l l =  1). 
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general W ( A ) ,  and hence the dissipativity of A, depends upon the specific SIP under 
consideration. If A generates a strongly continuous contraction semi-group, however, 
then A is dissipative with respect to any norm-compatible SIP. 

Lemma 3.1. (Lumer and Phillips 1961, lemma 3.4). Let A be densely defined and 
closable with closure (smallest closed extension) A. If A is dissipative then there exists a 
SIP in W relative to which A is dissipative. 

Lumer and Phillips (1961, theorem 3.1) have shown that if A is dissipative, densely 
defined and if the range of 1 - A is W, then A generates a strongly continuous 
contraction semi-group. They further state that a closed, densely defined, dissipative 
operator A generates a strongly continuous contraction semi-group if in addition A* is 
dissipative. Since we do not have sufficient control over 9 ( J * ) ,  we cannot use these 
results directly. It turns out, however, that 1 and & are dissipative and that it is 
possible to conclude from these results that J generates a strongly continuous contrac- 
tion semi-group. 

We introduce a SIP in E. Let f(u) and g ( u )  be Lebesgue-measurable complex 
functions of U E R3. We define &(U) by 

f ( u )  = I f (u ) l4 fw  (3.6) 

for U with f(u) # 0 and we set &(U) = 1 for U with f(u) = 0. If(u)l and 4f(u) are 
measurable along with f(u) and, since I&(o)l= 1, # f ( u )  E E*. The SIP in E is now 
defined by 

[f, 811 = llgll1 j dUf(U)&(U) = IlSlll *(f, 4 g h  f, g E E. (3.7) 

It is easily checked that the relations (3.4) hold. 

Proposition 3.2. 7 is dissipative. 

Proof. Let f~ 9 ( J )  = 9 ( v ) .  Then 

[Jf, f11 = Ilflll<Jf, 4f) 

Here the Fubini-Tonelli theorem has been applied followed by a relabelling of the 
variables (U * U’), Since I~$~(u)&(u’ ) l=  1 we have Re &(u)&(u’) - 1 s 0. Kju’, U) 
being non-negative, it follows that Re[@, f]l s 0, i.e. J is dissipative. Since J is its 
closure it follows from lemma 3.1 that J is dissipative. 



1170 A Tip 

Remark. It is seen from (3.8) that [Jf, f l l  vanishes for f with constant phase b,f, for 
instance for f (U) 2 0. 

We now turn to the definition of a SIP in %*. In general it is not easy to give an 
explicit expression for this quantity. In the following, however, we only need a SIP 

[b,, $Im for a restricted class of J/’s from %*. Thus let $(U) E %* be such that there exists 
a uo for which I$(oo)l= ll$//m. This is certainly the case for simple functions $ and for 
continuous t,b from A (the latter tend to zero for large U). We now define ( 4  E Z*): 

(3.9) 

which definition makes sense for every 4 for which 4 ( u o )  is defined, in particular for 
simple and for continuous 4. It is clear that the relations (3.4) hold. 

Fdb,) = 14, (CI1.x = 4 ( v o j J ( u o ) ,  

Proposition 3.3. .?a is dissipative. 

Proof. Let $EA be b-simple. We define [4, $Im according to (3.9). Since 
jdu’K(o’ ,  u ) $ ( o ’ )  is continuous in U for b-simple $ and since v (u)$ (u)  is defined in 
U = uo (v(u) is continuous), we have 

[J’$,  41m = ( j du’ ~ ( u ’ ,  uojcI/(u’)- i . ( t . o ) $ ( u o ~ ) ~ i ~ ’ o i  

= do’ K(u’ ,  U O ) [ $ ( U ‘ )  - 4 C u 0 j l ~ C u d  

= do’ K(o’,  u d [ $ ( u ’ j & u ~ )  - 11~1l~l 

Since K(u’,  u O j a O  and l$(u’)$(uo)l  ~11$112 it follows that Re[&$, $ Ims0.  JLft is a 
(densely defined) restriction of Jd;( and consequently it follows from lemma 3.1 that i;, 
is dissipative. 

Lemma 3.2. Let 2 c  % be a non-trivial (i.e. A’# 0, .Y # Z) closed linear subspace. 
There exists a q5 E 9 ( J I & ) ,  4 # 0 with (f, 4) = 0 for every f~ 9. 

Proof. Let f be measurable and let P,, p > 0 be the projector defined by (P,f)(o) = f ( o  i ,  
U ~p and (P,f)(u) = 0 otherwise. Further, let E, = L’ (S (p ) ,  do), where S ( p )  is the ball 
with radius p centred in the origin in R3. Thus %: = Lm(S(p), do). We distinguish two 
cases. 

(a) 3 p > O w i t h 2 c Z p .  L e t q 5 ( u ) = l f o r 2 p s c s 3 p  andd(o)=Ootherwise. Then 
q5(u) fulfils the requirements of the lemma. 

(b) There is no p > 0 such that 2 c E,. Then P$Z is a non-trivial closed subspace of 
ZP. (Since llP,flll +/I fill for p + 00 it follows by taking p sufficiently large that we can 
achieve that P$Z# 0.) It is a consequence of the Hahn-Banach theorem that there 
exists a non-zero b, E E: with ( f ,  4 )  = 0, Vf E P x .  We extend b, to E* by setting 
b,(u) = 0, U > p .  Now b, is contained in B((JI&), ilq511.a = l/q511m # 0 and for every f~ 9 we 
have ( f ,  4) = P,f, P,b,) = 0. 

Theorem 3.1. i generates a strongly continuous contraction semi-group {Ut t )  = 
exp(jt), t 3 0). Thus f ( t )  = U(t ) f  is strongly continuous in t 3 0 and llUct)ll G 1. 
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Proof. We follow the line of reasoning of the original proof (Lumer and Phillips 1961, 
0 3). Thus we have to ascertain that (1 -J)9((J) = Z. Suppose that 2 = (1 -J)9((J) # 
%. Since J is closed dissipative with non-zero domain, 2 is closed and non-empty. 
According to lemma 3.2 there is a 4 E 9 ( J L ) ,  4 # 0 such that ((1 -J ) f ,  4 )  = 0 for every 
f E 9((J). It follows that (1 -JL)d = 0 but this is impossible since J L  is dissipative. 

Starting from U(t )  we can define the adjoint semi-group U*(t) acting in P by 
duality. However, although U*(t)  is weak*-continuous, it need not be continuous in 
the strong topology of Z*. This problem has been considered by Hille and Phillips 
(1957, ch 14) who introduce a different notion of adjointness, the so-called 0- 
adjointness. Thus 2@ = mc Z* and the restriction J' of J* to 2? generates a 
strongly continuous contraction semi-group acting in @ which coincides with the 
restriction of U*(t)  to p. For bounded J, 2? = Z* but for unbounded J this may not 
be true. Nevertheless, since J* is defined for the b-simple functions and the constant 
function, 2? at least contains their closed linear span. 

Theorem 3.2. LetfE Z be real, non-negative (i.e.f(u) 3 0, o E R3). Thenf(t) = exp(Jt)f 
is also real, non-negative and Ilf(t)lll = Ilflll. 

Proof. 40(u )  =- 1 is contained in 9b.T') c P and is an eigenfunction to J' with cor- 
responding eigenvalue zero (.To& = 0). Consequently exp(J't)q50 = q50 so that 
( f ( t ) ,  40) = (exp(.E)f, 40) = (f, exp(J't)40> = ( f ,  40) = llfill since f is non-negative. Let 
f ( o ,  t )  =!(U, t )  for U with f ( o ,  t )  2 0 and f'(u, t )  = 0 otherwise. Further let - f (u ,  t) = 
f ( u ,  t ) - f+(u ,  t).  (Since is a real operator f ( u ,  t )  is real along with f (o) . )  Thus 
f ( o ,  t )  =f(o,  t ) - f - (u ,  t )  is decomposed into its non-negative and negative parts and 

On the other hand 

Ilf(t)lll= Ilf+(t)lll +lIf-(t)lL= II exp(Jf)flll SIlflll. 
Consequently Ilf-(t)lll = 0, i.e. f ( u ,  t) 5 0 (almost everywhere, to be precise) and 
Ilf(t)lll = Ilflll. 
Remark. The function fl(ol) in equation (1.1) is a distribution function, i.e. non- 
negative. Theorem 3.2 states that for spatially homogeneous systems this property is 
conserved in time. In addition the normalisation is time-independent. 

So far we have not included the case that an acceleration term is present. Let us 

(3.10) 

which replaces J in (3.1). Our procedure will be basically the same as before. There is 
one difference, however. Since the acceleration term contains the derivative a,, we can 
no longer make use of a dense set of simple functions. Instead we take a set X of 
continuously differentiable functions which is dense in Z and in A. We suppose that 
f l u )  E X  along with f ( o )  and that f ( o )  vanishes for sufficiently large U. This implies that 
a a,f(u) also vanishes for large U. (For X we may take Cr (R3), the space of infinitely 
differentiable functions of compact support.) Thus J ( a )  with domain 9 ( J ( a ) )  = 

therefore consider the operator (a is a constant vector) 

J ( a )  = J - a .a,, 
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9 ( J )  n 9 ( a  .a,) is densely defined since each f~ JV' is contained in 9 ( J ( a ) ) .  It follows 
that J*(a)  exists as a closed operator acting in ft?. Since q5 E X vanishes for large U, J ' 4  
is contained in A. Also a .a,q5 vanishes for large U, i.e. a .a,q5 E A. Thus 

(3.11) (J'(u))"& = J' + a * a, 
with domain X is densely defined in A. Let f~ 9 ( J ( a ) )  and d E JV. Then 

( J ( a ) f ,  4>=(f, (J'+a*a,)q5>=(f,J '(a)C$)=(f,  (J'(a)).Mq5) (3.12) 

so that (J'(u))M is a restriction of (J"(a))&. In the same way as in 0 2 we can now 
conclude that J(a)  is closable with closure n u ) .  Of course f and n u ) ,  a f 0, may have 
different domains. This happens for bounded J ;  9 ( J )  = 2Z but, since a '3, is unboun- 
ded, 9 ( f ( a ) )  = 9(au).  

We can repeat the line of reasoning followed in the proofs of propositions 3.2 and 
3.3, with the result that [Jf, fll and [J'$, $100 have non-positive real parts for f, $ E N. 
Thus it remains to consider [-a a,f, fll and [a *a,& $Im for f, $ E X. We have 

[ -a  *a,f ,f l l= llflll du {-a ~ ~ , [ ~ f ( u ) ~ q 5 ~ ~ o ) l ~ ~ ~ f ( o )  

(3.13) = -[-a -a,f, f11, 

so that (3.13) is purely imaginary as is the case for [a .a&, ~ $ 1 ~  since 

[a  *a,& 41m = [a * a u ~ ( ~ ) l d ( u ) l u = u ,  

= a * a, I4 (U) i 2 I u  = U0 - [a * a,&u)ld (U )I" = t7" 

= -[a ' au4,4103. 13.14) 

(Note that ~ u ~ q 5 ( u ) ~ 2 ~ u ~ u o  = 0 since Iq5(0)1 takes on its maximum 1]411m in U = 00.) It 
follows that J(a )  and J L  (a) both with domain X are dissipative. Since both operators 
are closable it follows that their respective closures f ( a )  and & (a) are also dissipative. 
But now theorem 3.1 can be extended. 

Theorem 3.3. Theorem 3.1 holds with replaced by f ( a ) .  

Since dO(u)  5 1 is still an eigenfunction of J*(a) with corresponding eigenvalue zero, 
we can repeat the line of reasoning that resulted in theorem 3.2, i.e. 

Theorem 3.4. Theorem 3.2 holds with f replaced by j ( a ) .  

Remark. The fact that -a .a,, has purely imaginary numerical range is connected with 
the fact that this operator generates a group of norm-preserving operators in Z and %* 
respectively (Lumer 1964). 
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Remark. At this point we would have run into serious problems if we had tried to treat 
the corresponding extension C(a) of C acting in X C(a)  would have taken the form 

C(a)= C-u*d , ,+ma * u l / ( k T )  

and the operator -U -a, + mu * ul / (kT)  has a spectrum that covers the whole complex 
plane. 

Since zero is an eigenvalue of J*(a) it is also a point of the spectrum of J(a), but it is 
not necessarily an eigenvalue (fi”’ is not an eigenfunction for this eigenvalue; Jfi”’ = 0 
but -a . d,,fi”’ # 0). It can be shown that J ( a )  does not have the eigenvalue zero for the 
fixed scatterer (Lorentz) model. In general the question can be raised whether or not 
f ( t )  = exp[J(a)tv tends to a limit for large t. Here we touch upon the question of the 
long time or ergodic behaviour of f ( t )  which is in general a complicated matter. We 
hope to come back to this problem on another occasion. 

4. Discussion 

In the present work we have shown that the theory of semi-inner product spaces can 
conveniently be used to demonstrate that for spatially homogeneous systems the 
Boltzmann equation (1.1) makes sense as an evolution equation acting in the space of 
absolutely integrable functions of velocity. We also found that the positivity and 
normalisation of the distribution function are conserved in time. 

We did not study the spectral properties of the collision operator J. Our only result 
in this direction is proposition 2.4 where we stated that discrete eigenvalues of J* are 
real. We would expect, however, that the full spectrum of J (and hence of J*) is real 
non-positive. This property can indeed be established for a large class of cross sections 
U @ ;  g‘) and we intend to discuss these matters in a future publication. 
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Appendix 

According to equation (2.6), 
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We set 

g = w +A, g’= w -A. (A.2) 

Momentum conservation (equation (2.6)) yields 

0; = u2+(ml /m2) (1 )1 -~ i )  (A.3) 

so that (A4 = ml + m2) 

A = [ W ( 2 ~ d l ( u i - v ; ) ,  w = v ~ - v ~ - A = u ~  -U; +A. (A.4) 

Thus 

K(ul, U;) = j dw a ( w  +A,  w -A)8(2A* w ) ( a / ~ r ) ~ ”  exp[-a(w - U ;  -A)2. 

Taking Aparallel to t h e 2  axis we have u l l  = u;1, u12 = 
and we obtain 

64.5)  

andS(2A. w )  = (2A)-’6(wd 

K ( u l ,  u ;  ) =@(ul, u ; ) ( 2 A ) ” ( a / ~ ) ” ~  exp[-aA-*(A2+A-u; )2] (AA) 

Furthermore we find by changing the integration variables from u1 and u2 to g and 
with C(ul, U;) given by equation (2.8). 

U; that 

\ dul K(o1, v i )  

which is equation (2.15). 
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